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Local rates of heat transfer were obtained for a cone-cylinder model
and a psrabolic-nosed-cylinder model at a Mach number of 3.12 and angles
of attack up to 18°. Data were obtained for cooled surfaces at unit Reynolds

y numbers of 0.36 and 0.65 million per inch based on free-stream conditions.

~ ‘~” Zero angle of attack data are included for comparison.

For similsr type boundary layers heat-transfer coefficients at angle
M of attack were always higher than those at zero angle of attack at cor-

responding geometric locations. On the windward side Stanton numbers
increased steadily with angle of attack; however, no systematic variation
of Stanton numbers with angle of attack was found on the sheltered side.

The parsholic forebody showed the following advantages over the con-
ical forebody: (a) it increased the extent of lsminar boundary layer on
the windward side of the model, and (b) it reduced the Stanton numbers
on corresponding geometric locations of the two models (when the models
possessed similar type boundary layers), except on the -leewardside where
no definite advantage was evident due to forebody geometry.

Heat-transfer coefficients along the most windward and most leeward
generators were approximately equal near the tip of the models at all
test configurations. Toward the aft part of the models, however, the
ratio of Stanton numbers along the most leeward to those along the most
windward generators at equivalent distances from the tip was between 2
and 3 at 3° angle of attack, and gradually decreased to a ratio of ap-
proximately 1/2 at 18° angle of attack.

Within the range and accuracy of the investigation,the unit Reynolds
number did not have a significant effect on the values of the Stanton
numbers along the most leewsrd generator of both models.
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The problems associated with aerodynamic heating of an sxfsymmetric
body at zero angle of attack have been extensively studied, both theore-
tically and experimentally. The problems involved, however, increase in
complexity when the body is subjected to some angle of attack with respect
to the undisturbed free stream.

Few theoretical attempts to solve the problem of a cone at angle of
attack under heat-transfer conditions have been made up to the present
time. The flow analyses available are limited to conditions that reduce
the range of their applicability. Reference--lis limited to isothermal
wsll conditions and only applies to the most windward generator, provided
the boundary layer there is lsminar. The same Iirnitationsof’l~inar
boundary layer and isothermal wall conditions are required for the ap-
plication of the theory of reference 2; it can be used to find the heat
transfer along any generator of a Conej but is restricted to s~l angles
of attack. In order to contribute to the experimental approach of these
problems, the Lewis laboratory initiated in 1954 a series of tests de-
signed to isolate and establish the effects of specific parameters on
heat-transfer characteristicsat angle of attack. Ml tests were conduc-
ted in the same wind-tunnel facility (see APl?ARATUSAND PROCEDURE) with
the same bodies of revolution (see fig. 1).

In the esxly stages of this program, studies were made to find the
effect of heat transfer &nd pressure gradient on the location of transi-
tion at zero angle of attack (ref. 3). In another report (ref. 4) heat-
transfer data were presented for the two models of figure 1 at zero angle
of attack. Reference 5 dealt with the effects of extreme cooling of these
models on-boundary-layertransition. The objective of previous tests at
angle of attack was to find what effect it,had on recovery factors (ref. 6).

This paper presents the effects of angle of attack on heat-transfer
characteristicson a cone cylinder and parabolic-nosedcylinder (fig. 1).
Included for comparison are the heat-transfer data on these models at
zero angle of attack. Limitations on data accuracy due to testing
techniques and an estimate of the maximum errors introducedby radiatioh
and condition effects are included in the text.

APPARATUS N’tllPRocEmIE

The investigationwas conducted in the Lewis 1- by l-foot supersonic
wind tunnel, which operates at a Mach number of 3.12. Tests were made
at two values of the unit Reynolds number, namely, 0.36 and 0.65 million
per inch. The tunnel stagnation dew point was about -35° F at all times.
Further details concerning this facility may be found in reference 3.
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The dimensions and thermocouple-locationsof the models used to ob-.
tain the heat-transfer data are shown in figure 1. Both models were con-
structed from a nickel alloy with a wall thickness of approximately 1/16
inch. The cone cylinder was made of monel, whereas the parabolic-nosed
cylinder was fabricated from “K” monel. The maximum surface roughness
on each was less than 16 microinches. Each model.was instrumented with
calibrated copper-constantan thermocouples of 30-gage wire. Axial tem-
perature distributions for both models were determined from three rows
of 15 thermocouples each, located on three axial planes (generators)at

g
45 meridional degrees apart. The test models were first cooled to 120° R
by enclosing them in a set of shoes, figure 2(a), sndby passing liquid*
nitrogen into the shoes and over the model surface. The nitrogen was
then exhausted through the base of the shoes. Photographs of the cone-
cylinder model with shoes along the tunnel wall and in place are given
in figures Z(a) and (b), respectively.

~ The shoes couldbe operated while the tunnel was running. For any
given test, the shoes were placed over the model after the desired tun-

2 nel conditions had been reached. The model was then precooledby passing

9 liquid nitrogen through the retraction struts. After a uniform wall tem-

H perature of 120° R was obtained, the shoes were snepped hack against the
tunnel walls by means of air cylinders (fig. 2(b)).

Heat-transfer data were obtainedby utilizing the transient technique
described in detail in reference 3. Transient temperature distributions
were obtained from datarecorded on multichannel oscillographs.

The flow over a body of revolution at angle of attack is essentially
symmetric *out a plane containing the most windward and most leeward
generators. The greatest deviation from symmetry about this plane would”
be anticipated in the separated flow region of the sheltered side. Be-
cause of the essentially syuunetricalflow, only half of the parabolic-
nosed-cylinder model located entirely on one side of the plane of symmetry
was investigated. Data at a given angle of attack were obtained in two
installments. The parabolic-nosed-cylinder mdel was first mounted in
the tunnel at an angle of attack a with its three rows of thermocouples
occupying the 0° (most windward), 45°, and 90° generator locations.
Later the model was placed in a -a position without rotation about its
own axis; in this position the same three rows of thermocouples occupied
the 180° (most leeward), 135°, and 90° generator locations, respectively.
Thus, for each angle, data on the 90° generator of the parabolic-nosed-
cylinder model were obtained twice. This duplication was intended to
show the degree of repeat~ility of the test results. As seen from part
(b) of tables II to V, the two sets of Stanton numbers obtained along
this generator were within +15 perceut of their mean value for all.test
configurations.

w

--
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With the cone-cylindermodel data were obtained not only for the 0°,
45°, 90°, 135°, and 180° generator locations as with the parabolic-nosed
cylinder..model,but also along the 225° generator location on the other
side of the plane of symmetry. This was accomplishedby first obtaining

0 45°, and 90° generator locations as previously describeddata along the O ,
for the .+-a position. In placing the model at a -a position, it was
also rotated 45°..ahoutits own axis so that.the 0°, 45°, and 90° generator
locations now occupied the 2250, 180°, and 135° positions, respectively.
This modification was made in order to compqre the heat-transfer results
in regians symmetrically located about the plane of symmetry of the flow,
when the flow is locally sepsrated. The msximum deviation of Stanton
numbers along the 135° and 225° generators was Q.9”percent of their mean
value (see part (a) of tables II to V). ~is is probably due to a cofibin-
ation of experimental inaccuracies and asymmetry of the flow on the shel-
tered side (see, e.g., ref. 6).

—

‘:
‘i

DATA REDUCTION

The general equation describing the transient heat-transferprocess
for a nonisothermal cone at angle of attack having a thin wall is

.

.-

q
=

measured qconvection + ‘conduction+ ‘radiation+
in skin

qconduction to
inside of model

or more explicitly, in conical coordinates>

‘radiation + ‘conduction to (1)

inside of model
where .—

Tw ‘Tw(x, e, t)

(All symbols are defined in the appendix).

When the heat-transfer rates by radiation and conduction me small
compared with those by convection, equatio_n(1) gives the following ex-
pression for the local heat-transfer coefficient

aTw

pbcp,b~ ~

‘= Tad-Tw
(2) —

?

u
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. Experimental values of h were
responding values of Stanton numbers
air ahead of the shock were computed

determined by equation
based on properties of
from

St. = h
pocp,ouo

5

(2), andcor-
the undisturbed

(3)

Wall temperatures were computed for 15 seconds titer the mdels were
exposed to the main stream (by retracting the shoes). The exact choice
of 15 seconds was somewhat arbitrary, but was made because of large teui-
perature potentials (Tad - ~) and large rates of change of temperature

with time (aT@) that existed at approximately K seconds, which would

contribute to greater accuracy in reducing the data. Wall temperatures
as t+= (when thermal equilibrium was reached) were used in lieu of
adiabatic wall temperatures (T~) derived from a knowledge of the free--.
stream conditions and the recovery factor. The substitution of ~+=

fOr Tad was made because of inaccurate knowledge of the numerical values
.

of the recovery factors in the transitional phase between laminar to turbu-
lent boundary layers, and, especially in regions of crossflow separation.
Some of the experimental equilibrium wall temperatures obtained in this
way might be as much as 14° F too high in regions where kminar boundary
layer existed at 15 seconds and then became turbulent upon reaching equi-
librium conditions. In such regions the actual values of the Stanton
numbers might be up to 7 percent higher than the values listed in tables
I to V since the laminar boundary-layer regions that existed at 15 seconds
had an average temperature potential (T~ - ~) of *out 200° F.

An additional effect of substituting El?t+=for !I!tiwas that heat

conduction within the uodel material (see below) caused the equilibrium
temperatures to differ somewhat from their corresponding true adiabatic
temperatures, thus introducing an added error in the computations. In
regions where the boundary layer remained either laminar or turbulent
d~ing the
Tt+~ and

(Tad- Tw)

.-
entire duration of the test, the msximum difference between
Tad WaS 8° F, which, for the average temperature potential

of 2CK1°F, amounted to a msximum Stanton nunibererror of +4

percent.

Time rates of change of temperature were foundby using five data
points: T15 (the temperature at 15 see), T15@, and T=8 where 5

is a time increment. A quadratic curve was then fitted through these
points by the method of least squares, and a slope of this curve evalu-

ated at ’15”
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are the estimated uncertainties of the basic quantities: .

percent . . . . . . . . . . . . . . . . . . . ..Q.
Slope aTw/~t,-percent . . . . . . . . . . . . . . . . . . . . . . .=

Specific heat of model wall material, cp,b) percent . . . . . . . . . *3

Model wall temperature, ‘R . . . . . . . . . . . . . . . . . . . . .A2
Model equilibrium wall temperature, % . . . . . . . . . . . . . . . &
Tunnel total temperature, % . . . . . . . . . . . . . . . . . ...@
Tunnel total pressure,percent . . . . . . . . . . . . . . . ...343.3

The errors introduced in neglecting the radiation and exisl conduction
terms in equation (1) were investigated in reference 4 for a cone at zero
angle of attack and were less than 2 percent of the total heat absorbed.
With the model at angle of attack the errors due to radiation and axial
conduction sre essentially the same as those for zero angle of attack.
An additional source of error is, however, involved at angle of attack,
namely, peripheral heat conduction within the model material. *

The peripheral heat conduction for a thin-walled cone at angle of
attack is givenby (see eq. (l))

h

-1 az~.
(4)

conduction

where

Tw = Tw(x, e, t)

the error involved by neglecting this term in evalu-
heat-transfer coefficient (eq. (2)), it is necessary

In order to estimate
sting the convective
to compare the smount of heat conducted along the periphery of the cone
(eq. (4)) with the measured amount of heat i~lux (~a,medj eq. (1)).

However, not enough peripheral temperat~e-distribution data were avwlable

to determine a2&/?182 with reasonable accuracy. An alternative approach
was, therefore, tsken to estimate thiseMeet by comparing Stanton numbers
obtained at t = 15 seconds (when conduction was present) with those ob-
tained at t ‘-O second (when the wall temperature waa essentially uni-
form so that conduction was very small). This comparisonwas made only
for the most windward generator of the conical forebody and is discussed
in detail in RESULTS AND DISCUSSION. Unfortunately, it was not possible
to analyze all the data for the zero time condition where conduction errors
would automatically be eliminated. The existence of transition reversal
(ref. 7) for some test conditions prevented the evaluation of all heat-
transfer data at these very esxly times. ●
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RESULTS AND DISCUSSION

Wall temperatures at 15 seconds (Tw), equilibrium temperatures (Tad),

and Stanton numbers for both models are listed in tables I to V.

Zero angle of attack data are listed in tables I(a) and (b) for
unit Reynolds numbers of 0.36 and 0.65 million per inch, respectively.
For the models at angle of attack the data are tabulated along generators.

& ~(a),Tables II(a), III(a and V(a) list the data for the cone-cylinder
model at 3°, 7°, 12 , and 18° angle of attack for both values of the unit
Reynolds number, respectively. Corresponding data for the parabolic-nosed-
cylinder model are given in tables II(b), III(b), IV(b), and V(b).

The discussion of the test results will, of course, pertain to the
wall-to-free-stream temperature ratios for which the data were reduced.

Compsrisonwith Theory

Experimental data along the most windward generator of the conical
forebody are compared in figure 3 with the theories of references 1 and
2. As shown in figure 3, the data agree within 30 percent with the theory
described in reference 1 at all angles of attack end within about the
seinepercentage with the theory of reference 2 for 3° angle of attack.

The difference between theory and experiment as seen in figure 3 is
probably the result of a combination of the following contributing
factors.

Peripheral conduction: In order to evaluate the effect of peri~h-
eral conduction, Stanton nunbers were evaluated at t - 0 (when conduc-
tion was quite small) and compared with corresponding Stanton numbers
at t = 15 seconds (when large peripheral conduction probably existed).
This was done along the most windward generator (where peripheral con-
duction would be largest) of the conical forebody at a unit Reynolds

number of 0..36x106per inch, and is shown in figure 4. ThiS plot shows
that peripheral conduction lowered the Stanton numbers by as much as 10
to 35 percent, but did not alter the general trend of increased Stanton
number with angle of attack (compare figs. 4(e) and (f)).

Nonisothermal conditions: Experimental data were coqgared with iso-
thermal theories when in reality definite temperature gradients existed
both axially and circumferentially. Although no method is presently
available to modify the isothermal theories to fit the present situation,
there is strong evidence thd the nonisothermal condition might sub-
stantially alter the theoretical isothermal heat-transfer coefficients
(see ref. 8).



8 UACA TN 4378

Wncertalnties in application of theory: Within the range of “large
angles of attack” (up to 8°) the theory developed in reference 1 solves
the problem of a yawed circular cone. For “very large angles of attack”
(from 120 up) ayawed Infinite circular cylinder was substitutedto
approximate the cone at angle of attack. There would, therefore, be
some doubt of the validity of the theoretical lines at 12° and 18” angle
of attack in figure 3. Also, the theory of reference 2 is only valid
in the limiting case of l’vanishing”angles of attack. There is then a
doubt whether 3° is small enough to be considered “vanishing”, thereby
affecting a meaningful comparison between the theory of reference 2 and
the present experimental data (fig. 3(b)). In fact, since references 1
and 2 solve the same set of equations for t% most windward generator of
a cone at angle of attack the difference between the two theoretical
lines shown in figure 3(b\ can only be attributed to the fact that in
reference 2 only the first order term in angle of attack was retained,
whereas both the first and second order terms were retained in the theory
of reference 1. The data in figure 3(b) should therefore compare more
appropriately with the theory of reference 1 than with that of reference

A

2 although neither theory can be employed as a direct comparison with
experimental data because of the peri.~eral conduction and nonisothermal

●

conditions mentioned before.

Effect of Angle of Attack

The effect of angle of attack on the heat-transfer coefficient along
the most windward generator at a unit Reynolds number of 0.36 million
per inch is shown in figure 5. Stanton numbers for both the cone-cylinder
model, figure 5(a), and the parabolic-nosed-cylindermodel, figure 5(b),
increased with angle of attack. The abrupt increase in Stanton number
at the aft pert of the cone-cylinder model at 18° angle of attack, figure
5(a), is believed to be due to transition from laminar to turbulent
boundary-layer flow.

Similar trends were obtained at the higher unit Reynolds number ex-
cept for transition which appeared at both the 12° and 18° angle-of-attack
configurations. At 12° attitude transition along the most windwsrd gen-

—

erator of the cone-cylinder model was located at about 4 inches from the
tip (see fig. 9(a)), whereas at 18° angle-of-attacktransition had moved

upstream to about # inches from the tip (fig. 9(b)).

It should be noticed that the transition locations shown in figures
5(a), 9(a) and (b) are associated with the wall-to-free-streamtemperature
ratios given in tables IV and V and also ttit transition would pro%ably
be located elsewhere for different temperature ratios.
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A typical effect of angle of attack on heat-transfer coefficient
along the most leeward generator is shown in figure 6. Contrary to the
gadual increase in Stanton number with angle of attack observed along
the most windward generators (fig. 5), heat-transfer coefficients along
the most leeward generators (where the crossflow component was probably
separated) appear to have no orderly pattern. Comparison of the data
along the most leewsrd generator with corresponding data at zero angle
of attack shows that the Stanton numbers at angle of attack are always
higher than at zero angle of attack for corresponding test conditions
and distances from the tip of the models, as seen in figure 6 for the
particular cases shown. The latter effect applies also along all.other
generators for all test configurations.

Perhaps the most striking effect of angle of attack on the leeward
side is the relatively high value of the heat-transfer coefficients near
the sft part of the model at fairly small angles of attack as compared
with those at zero angle of attack. This is readily seen by comparing
the zero and the 3° angle-of-attack curves in fi~e 5 with those in
figure 6. This effect is further Illustrated In figure 7 where the
Stanton numbers along the most windward and most leewsrd generators of
the parahlic-nosed-cylinder model sre shown at several angles of attack;
also included for comparison in figure 7 are the data for the model at
zero angle of attack. At the aft psrt of the model, ratios of Stanton
numbers along the most leewsrd to those along the mst windward generator
were of the order of 2 to 3 at 3° angle of attack (see fig. 7(a)). This
ratio decreased with increased angle of attack, figures 7(b) and (c), to
a value of about 1/2 at 18° angle of attack, figure 7(d). Results similar
to those shown in figure 7 were also obtained for the cone-cylinder model.

In contrast to the large range of vsriation with angle of attack of
Stanton number ratios along the aft part of the most leeward and most
windward generators, heat-transfer coefficients along these generators
were approximately equal nesx the tip of the models at all test
configurateions.

Effect of Forebody Geometry

From a heat-transfer point of view, the parabolic forebody had two
advantages over the conical forebody.

For corresponding unit Reynolds mnhrs, angles of attack, and .
geometric location,”Stanton numbers on the parabolic forebody were gen-
ersl.lylower than those on the conical forebody, except on the leeward
side where no definite advantage due to forebody geometry could be es-
tablished. A typical case illustrating the reduction in Stanton number
due to forebody geometry is illustrated in figure 8 for the models at
12° angle of attack and unit Reynolds number of 0.36 million per inch.
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The favorable pressure gradient associated with the parabolic fore-
delayed the start of transition to turbulent flow on the windward
of the mrabolic-nosed-cylinder model as compsxed with that on the

“

cone-cylindel model. This is-illustrated in figure 9 for the most windward
generator (which is also a streamline of the flow) where the beginning of
transition is recognized from the start of the rise in Stanton number
with increased distance along the generator.

Effect of Crossflow separation

An additional observation can be made concerning
coefficients along the most leeward generators of the

heat-transfer
two models.

-.

In figure 10 Stanton numbers along the most leeward generators of
the two models at 18° angle of attack were plotted against distance from
the tip of the models for”both values of unit Reynolds number. As shown
in figure 10, Stanton numbers at the two values of the unit Reynolds num-
ber are nearly equal in magnitude and appear to fluctuate randomly about

*

their average value. Similar plots made for the smaller angles of attack
exhibited the same general trend. This would suggest that within the

.
.

range and accuracy of the experiments the unit Reynolds number did not
have a significant effect on the values of the Stanton numbers along the

—

most leeward generators. It is believed that the insensitivity of the

Stanton numbers to the free-stream unit Reynolds number is due to crossflow
—

separation.

SUMMARY OF RESULTS

The following results were obtained from an investigationof the
convective heat-transfer properties of two bodies of revolution at angles
of attack up to 18° at a Mach number of 3.12.

-

1. Experimental lsminar heat-transfer coefficients obtained along
the most windward generators of the conical forebody were within 30 per-

—

cent of the theoretical values of references 1 and 2. This difference
+

was attributed to a canbination of the following factors: (a) peripheral =

conduction in the model material, (b) differences in the nonisothermal
data of the experiment with isothe~~ theories~ (c) Possible inv~i~tY
of the theories in the range of present test conditions, and (d) accuracy
in collection and reduction of data.

2. For similsr type boundary layers Stanton numbers at angle of at-
tack were always higher than those of corresponding geometric location
and test conditions at zero angle of attack.

.

.
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.
.

3. hong the most windward generators Stanton numbers increased

. steadily with increased angle of attack, whereas no orderly variation of
Stanton number with angle of attack was found along the most leeward
generator.

g
4. Heat-transfer coefficients along the most windward and most lee-

ward generators were approximately equti near the tip of the models at
* all test configurations. Towards the aft part of the models, Stanton

numbers along the most leeward generators at 3° angle of attack were

about 2 to 3 times larger than those at equivalent distances from the
tip along the most windward generators. This ratio of Stanton numbers
along the mast leeward and most windward generators decreased with in-
creased angle of attack, reaching a value of approximately l/2 at 18°

+ angle of attack.

$ 5. The psrabolic forebody tended to reduce the heat-transfer coef-
ficients on the windward side and to increase the span of lsminar boundary

~ layer in comparison with the conical forebody.

6. The unit Reynolds ntmiberhad an insignificant effect on the heat-
. transfer coefficients along the most leeward generator.

Lewis Flight Propulsion kboratory
National Advisory Committee for Aeronautics

Cleveland, Ohio, July 25, 1958

-—-
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APPENDIX - SYMBOLS

speci~ic heat at constant pressure, Bt_u/(lb)(OR)

local heat-transfer coefficient, Btu/(see)(sq ft)(OR)

therml conductivity,Btu/(ft)(sec)(OR)

heat-transfer rate, Btu/(sq ft)(sec)

Reyliblds number, Re = ~ x

‘o

distance of surface to centerline dfmodel (fig. l(b))

dimensionless heat-transfer coefficient
number

temperature, ‘R

time, sec

velocity, ft/sec

axial distance measured from the tip of

angle of attack

peripheral angle (for the most windward

kinematic viscosity, (sq ft)/sec

density, lb/(cu

wall thickness,

cone half angle

ft)

ft

Subscripts:

ad adiabatic

b model material

o free stream shead of shock

t free:stream total condition

w conditions at the wall

definedby eq. (3), Stanton

.

.

the mcdel, ft

generator G = 00)

—

—

.
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TABLE 1. - AXIALTEMPERATUREAND STttTTONmm DISmUTIONS

AT ZEROANGLEOF ATTACK.

(a) Cone-cylindermcdel.

x, T~1 Tad, Stanton
In. ‘R ‘R number

Tt = 515°R~ u~o = 0.366x106in.-l

2
3
4
5
6

:
9
10
10.62
11.5
12.5
13.62
14.75
16

229
212
199
189
184
173
182
180
176
176
170
168
170
168
164

459
458
461
462
468
465
471
471
471
469
471
469
470
470
468

0.00104
.00085
.00072
.00058
.00046
.00041
.00040
.00039
.00036
.00029
.00022
.00020
.00021
.00017
.00019

Tt = 524°R; U~o=0.646H06 ~.-l

2
3
4
5
6

:

1:
10.62
11.5
12.5
13.62
14.75
16

252
235
218
206
192
196
204
202
198
209
197
203
209
---
213

473
477
481
480
482
480
481
480
480
480
478
481
483
---
481

0.00082
.00065
.00053
.00042
.00036
.00034
.00035
.00033
.oao30

-------
.00025
.00025
.00028

-------
.00033

(b) Parabolic-nosed-cylindermodel.

x, T T d, Stanton
in. {’ ‘R number

I f I

Tt = 524° R; U @o = 0.360ti06i.n.-l

r11.52
3
4
5
6

:

1:
11
12.5
14
16

285
256
238
216
208
195
189
183
178
173
170
170
166
171
174

473
471
471
469
470
468
470
468
470
471
474
479
485
480
479

0.00175
.00115
.00090
.00071
.00063
.00049
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